

SCIENCE- Biology Year 10

01a Transport in Cells

Lesson/Learning	Intended Knowledge:	Prior Knowledge:	Working Scientifically	Tiered Vocabulary	Support
Sequence	Students will know that	In order to know this, students need to already know that		and Reading Activity	
Lesson 1:	Students will know how to calculate and	Student will have heard the term diffusion in KS3 and			https://www.bbc.co.uk/
Diffusion	compare surface area: volume	should know that this is the method by which		Diffusion	bitesize/guides/zs63tv4/
	Students will know why exchange surfaces in	particles spread out. They will already know that is		Surface area	revision/1
	transport systems of multicellular organisms	someone sprays an aerosol, the particles spread		Villi	https://www.bbc.co.uk/
	are important	throughout the room and this is an example for		VIIII	bitesize/guides/zvptv9g
	Students will learn that the small intestine	diffusion.			/revision/4
	has a specialised exchange surface to absorb	Students will know that the air we breathe in contains			
	nutrients into the bloodstream. The small	Nitrogen, Oxygen and Carbon dioxide. We need the oxygen			https://www.bbc.co.uk/
	intestine is 7m long so the nutrients have	and we breathe out carbon dioxide			bitesize/guides/zwqycd
	plenty of opportunity to be absorbed into the	Students need to direday know that the small			m/revision/6
	blood. The surface of the small intestine is	Intestine is where absorption of nutrients takes place.			
	folded and covered in villi (projections) DO	This means the nutrients move from a high			Knowledge Organiser
	NOT REFER TO THEM AS HAIRS which	concentration in the small intestine to a low			D1
	increase the surface area. In addition, the villi	concentration in the blood. Students will know that			DI
	are covered in microvilli which further	gas exchange occurs in the lungs and that oxygen is			Model of a villi in AG18
	increase the surface area. The membrane is	useful and carbon dioxide is a waste product which			
	thin to provide a short diffusion pathway	we breathe out.			
	which means the nutrients don't have far to	Students need to already know that fish have gills not			
	move from the lumen (hole running through	lungs. Students will know that plants use carbon			
	a tubular organ) of the small intestine to the	dioxide from the air and this enters the plant through			
	blood. There is a good blood supply to ensure	the leaves and plants take in water through the roots			
	the nutrients can easily pass to the blood.	which are underground			
	Students will learn that gas exchange occurs				
	in the lungs in the alveoli. The alveoli are air				
	sacs which provide a large surface area to				
	allow oxygen to diffuse into the blood and				
	carbon dioxide to diffuse from the blood into				
	the alveoli to be exhaled. The alveoli are				
	surrounded by a network of capillaries to				
	provide a good blood supply and walls of the				
	alveoli are thin to provide a short diffusion				
	pathway. Student will know that gas				
	exchange in fish occurs in the gills which have				
	a large surface area and good blood supply				

	again to allow for efficient gas exchange (Structure of gills is not required for combined science but is for triple). Students will learn that roots have root hair cells which increase the surface area for mineral and water uptake. Students will learn that leaves have a large surface are and holes in the underside if the leaf which allow gases into and out of the leaf for respiration and photosynthesis.		-	-		
Lesson 1: Osmosis	Students will learn that Osmosis is the movement of water. Osmosis is defined as the movement of water from a dilute solution to a more concentrated solution across a partially permeable membrane A membrane that only lets certain substances pass through. Students will learn that a hypertonic solution is one that contains a higher concentration of solutes than inside the cell. When placed in a hypertonic solution, a cell will lose mass by osmosis- the water will move from a dilute area inside the cell to a more concentrated area outside the cell across the cell membrane. An isotonic solution is one that has the same concentration is the same inside and outside of the cell. This results in no net movement of water so there will be no change in mass. Students will learn that a hypotonic solution is one that contains a lower concentration of solutes than inside the cell and so water will move into the cell by osmosis and the cell will gain mass. Students will be able to plot data and identify the isotonic point of the cell.	Students will know that cell membranes control what goes into and out of the cell. Students will know that when we have a certain volume of a solution; a dilute solution contains a lot of water but few solutes and a concentrated solution contains lots of solutes but only a little water. They will relate this to drinking cordial. Students will be able to calculate Mean when given a set of data and use %. Students will be able to draw a suitable scale to plot data and know that the independent variable (the one you change) goes on the X axis and the dependent variable (the one you measure) goes on the Y axis	Iranslate mass data into graphical form Use % and calculate % change Plot and interpret graphs	Usmosis Region Partially Permeable	Knowledge Organiser B1 https://www.bbc.co. uk/bitesize/guides/zs 63tv4/revision/4 Onion + salt water plasmolysis practical – see Science Technicians folder, biology CPD	
Lesson1: Active Transport	Students will learn that active transport is the movement of substances from a low concentration to a high concentration and this is referred to as 'against a concentration gradient. To do this energy is required from the process of respiration and this is why root hair cells contain lots of mitochondria	Students will know that respiration is a chemical reaction that occurs in the mitochondria of cells and releases energy to allow living thing to move, grow, keep warm, build compounds Students will know that roots take up water for the plant and root hair cells are specialised cells with a large surface area and lots of mitochondria. Students will already know the reactants and products of		Carrier Protein ATP	https://www.youtub e.com/watch?v=AxX N-j6UzOY Knowledge Organiser B1	

	Students will learn that mineral ions are absorbed into the plant root hair cells by active transport from dilute concentrations in the soil. Students will learn that plants need Nitrate, Phosphates, Potassium Ions and Magnesium ions for healthy growth. Students will learn that sugar molecules are absorbed from lower concentrations in the small intestine to a higher concentration in the blood by active transport. Glucose is a reactant of respiration. Students will create a Venn diagram or table comparing Osmosis, diffusion and active transport and summarise the differences between these 3 processes.	photosynthesis and be able to write this as a word equation.		https://www.bbc.co. uk/bitesize/zuides/zc 7k2nb/revision/8
Lesson 2: Osmosis Required Practical	Students will have 5 different concentrations of sucrose solution of different concentrations including distilled water. Students will learn that the units for concentration are moldm-3. Students will label boiling tubes with each different concentration and use a measuring cylinder to measure a certain volume of each concentration of solution and put into the corresponding boiling tube. Students will use a borer to bore cylinder from potatoes and then use a ruler to measure each cylinder to certain length with a ruler and cut it with a knife. Students will learn that using the borer to make cylinders ensures the surface area of the potatoes is the same for each one. Student will use a balance to find the starting mass of each cylinder and record the results in a table. Students will place one cylinder in each boiling tube and start a stopwatch. After a set amount of time, the student will remove the potatoes, pat with a paper towel to remove excess water that could add mass and use the balance to find the end mass of each. These results will be recorded in the table. Students will learn how to calculate change in mass and then % change in mass (because the starting masses were all different) and then plot a graph of their	Students will know that a balance is used to measure the mass (grams) (don't let them use the word weigh), a stop watch measures length of time (seconds), a thermometer measures temperature (oC) and a ruler measures length (mm) Students will know that the independent variable in a practical is the one we change, dependent is the one we measure and the controls we keep the same to ensure results are valid. Students will already know that to improve reliability of results we would do the test 3 times, identify any anomalies (don't include these) then calculate the mean change in mass. Students will know that potatoes are made up of plant cells and be able to label the plant cell	Use appropriate apparatus to record mass and time Use appropriate apparatus and techniques to observe and measure the process of osmosis Measure the rate of osmosis uptake Plan an experiment to test a hypothesis Risk assessment and health and safety Translate mass data into graphical form Form a conclusion from the data Find the isotonic point from a graph. Using scientific theories to explain findings	Knowledge Organiser B1 https://www.youtub e.com/watch?v=itp1 Dpz0EnY

		I ne Sutton Acad	emy
results. Students will form a conclusion and			1
be able to explain the conclusion using the			
science of osmosis and then use the graph to			
identify the isotonic point of the potato.			

SCIENCE- Biology Year 10

02 – Disease

						<u>م</u>
Lesson/Learning Sequence	Intended Knowledge: Students will know that	Prior Knowledge: In order to know this, students need to already know that	Working Scientifically	Tiered Vocabulary and Reading Activity	The Sutton Support	Academy
Lesson 1: Communicable (infectious) diseases	Communicable diseases are diseases that spread because they are caused by pathogens Pathogens are microorganisms that cause disease The 4 pathogens are viruses, bacteria, protists and fungi They may infect plants or animals and can be spread by direct contact, by water or by air, sharing dirty needs, unprotected sexual intercourse, insects, dirty drinking water, undercooked/out of date food. The spread of diseases can be reduced or prevented by isolating patients who are ill, using antimicrobial cleaning products/sanitizer, cooking food properly, using condoms, using insect repellents/nets Non-specific defence systems of the human body against pathogens, including the: skin which forms a complete barrier, ciliated cells covered in mucus which traps pathogens and cilia waft to the throat, stomach acid, tears which contain enzymes.	Students will already know that there are some diseases you can catch from other people and some diseases which you can't catch. Examples could be given. Students should have some knowledge of how diseases spread and ways to reduce the spread of disease.	Describe and evaluate ways of tackling problems (WS1.4)	Microorganisms Pathogens Contaminated Symptoms Communicable	B3 infection and response KO https://www.bbc.co. uk/bitesize/guides/zx r7ng8/revision/1	
Lesson 2: Viral Diseases	Viruses live and reproduce rapidly inside cells, causing cell damage which causes symptoms of the disease. Because viruses are inside cells, treatment are difficult so vaccinations are used to try to prevent you catching a virus. Measles is a viral disease showing symptoms of fever and a red skin rash. Measles is a serious illness that can be fatal if complications arise. The measles virus is spread by inhalation of droplets from sneezes and coughs. HIV is a sexually transmitted disease. It is spread by sexual contact or exchange of body fluids such as blood by sharing dirty	Students familiar with concept that all living things are made from cells. Viruses are not cells Viruses are extremely small but can make us ill Students will have life experiences of having cold/flu which are caused by viruses.		Symptoms Discolouration Chlorophyll Reading activity- TMV, HIV and Measles	https://www.bbc.co. uk/bitesize/guides/zx r7ng8/revision/1	

	needles. It is caused by a virus what			
	destroys white blood cells. Initially causes a			
	flu-like illness.			
	There is no treatment for HIV but			
	antiretroviral drugs can be used to slow the			
	rate at which the virus reproduces .			
	Late stage HIV infection, or AIDS, occurs			
	when the body's immune system becomes			
	so badly damaged it can no longer deal with			
	other infections or cancers.			
	Tobacco mosaic virus (TMV) is a widespread			
	plant pathogen affecting many species of			
	plants including tomatoes. It gives a			
	distinctive 'mosaic' pattern of			
	discolouration on the leaves. Chloroplasts			
	are damaged which means there is less			
	chlorophyll to absorb sunlight so less			
	photosynthesis so less glucose made for			
	growth.			
Lesson 3:	Bacteria reproduce in the body by binary	Students will have life experiences of having cold/flu	Binary Fission	B3 infection and
Bacterial Disease	fission and produce poisons (toxins) that	which are caused by viruses.	Antibiotics	response KO
	damage tissues and make us feel ill		Toxins	https://www.bbc.co
	(symptoms). Salmonella food poisoning is		Discharge	uk/bitesize/guides/zx
	spread by bacteria ingested in food, or on		Reading activity-	r7ng8/revision/1
	food prepared in unhygienic conditions. In		Bacterial Infections	
	the UK, poultry are vaccinated against			
	salmonella to control the spread. Fever,			
	abdominal cramps, vomiting and diarrhoea			
	are caused by the bacteria and the toxins			
	they secrete. Gonorrhoea is a sexually			
	transmitted disease (STD) with symptoms			
	of a thick yellow or green discharge from			
	the vagina or penis and pain on urinating. It			
	is caused by a bacterium and was easily			
	treated with the antibiotic penicillin until			
	many resistant strains appeared.			
	Gonorrhoea is spread by sexual contact.			
	The spread can be controlled by treatment			
	with antibiotics or the use of a barrier			
	method of contraception such as a			
	condom.			
	Antibiotics are medication that are only			
	used to treat bacterial infections. They are			

	not effective against viruses are viruses are inside cells. The first antibiotic discovered by Alexander Fleming was penicillin. Bacteria can become resistant to antibiotics and: Should only be prescribed when needed The full course should be completed by the patient to reduce the chance of this happening.				
Lesson 4: Fungal Disease	Rose black spot is a fungal disease where purple or blackspots develop on leaves, which often turn yellow and drop early. It affects the growth of the plant as photosynthesis is reduced. Chloroplasts are damaged which means there is less chlorophyll to absorb sunlight so less photosynthesis so less glucose made for growth. It is spread in the environment by water or wind. Rose black spot can be treated by using fungicides and/or removing and destroying the affected leaves. Athletes foot is a fungal infection. Treated using antifungal cream/powder.	Students may already know that mushrooms belong to the fungi family and that some can be dangerous. Students should already know that fungi are eukaryotic cells as they have DNA inside a nucleus. Students may have heard of athletes foot.		Mycology Hyphae	B3 infection and response KO <u>https://www.bbc.co. uk/bitesize/guides/zx</u> <u>r7ng8/revision/1</u>
Lesson 5: Protist diseases	The pathogens that cause malaria are protists. The malarial protist has a life cycle that includes the mosquito. The mosquito bites and infected person, the protist travels to the liver of the host (the person) where it can reproduce. Infected liver cells burst releasing the protists into the blood infecting the red blood cells. Infected red blood cells burst and more protists are released infecting more red blood cells. If the infected person gets bitten, the protist will be carried to another person via the mosquito (vector). Malaria causes recurrent episodes of fever and can be fatal. The spread of malaria is controlled by preventing the vectors, mosquitos, from breeding and by using mosquito nets insect	KS3-Structure of unicellular cells	Describe and evaluate ways of tackling problems (WS1.4) WS1.3- Explain why data is needed to answer scientific questions and why it may be uncertain or incomplete/not available	Insecticide Stagnant Parasite Host Vector Fatal	B3 infection and response KO <u>https://www.bbc.co.</u> <u>uk/bitesize/guides/zx</u> <u>r7ng8/revision/1</u>

	repellents to avoid being bitten. Insecticides can be used to kill the mosquitos to prevent them from reproducing. Draining stagnant water removed their breeding place.				
Lesson 6: Cancer	Students will be able to describe cancer as the result of changes in the DNA in cells that lead to uncontrolled growth and division. Benign tumours are growths of abnormal cells which are contained in one area, usually within a membrane. They do not invade other parts of the body. Malignant tumour cells are cancers. They invade neighbouring tissues and spread to different parts of the body in the blood where they form secondary tumours. Scientists have identified lifestyle risk factors for various types of cancer. There are also genetic risk factors for some cancers.	Students will already know that cancer is a disease which can be fatal. Some students may have life experiences relating to cancer. Students will know that smoking can cause cancer		Benign Malignant Carcinogen	
Lesson 7: Life style	Students will know that there is a link between certain lifestyle choices and non- communicable disease: some factors interact to cause disease. The two main groups of factors are lifestyle choice and things that are taken into the body e.g., tobacco smoke or drugs including alcohol. They will know what COPD (chronic obstructive pulmonary disease) and cancer are together with possible factors that result in these diseases.eg., carcinogens result in cancers. Students will know how to describe the risk factors and occurrence of non- communicable disease.	Students will recall the meaning of the term non- communicable and know some examples (previous lesson) They will know what the term 'risk factor' means and give some examples.		Interact COPD Obstruct Chronic Pulmonary	
Lesson 8: Plant disease & Defences (Triple Biology only)	Plant diseases can be detected by: stunted growth spots on leaves areas of decay (rot) growths malformed stems or leaves discolouration	Students will already know that TMV is a plant disease cause by a pathogen Students will already know that rose black spot is a fungal disease that affects plants. Students should already know that the phloem carries sugars for the plant	WS1.4- Everyday applications	Mimicry Chlorosis Deterrent Reading Activity- Plant defences	B3 KO TRIPLE ONLY https://www.bbc.co. uk/bitesize/guides/z wkbqhv/revision/1

the presence of pests.

Identification can be made by: reference to a gardening manual or website taking infected plants to a laboratory to identify the pathogen using testing kits that contain monoclonal antibodies. Plants can be infected by a range of viral, bacterial and fungal pathogens as well as by insects. Students should review tobacco mosaic virus as a viral disease, black spot as a fungal disease and learn that aphids are insects which pierce the phloem to obtain glucose from the plant and as a consequence the plant would not have as much glucose for growth. Plants can be damaged by a range of ion deficiency conditions: stunted growth caused by nitrate deficiency (yellow leaves) chlorosis (yellow leaves) caused by magnesium deficiency. Nitrate ions are needed for protein synthesis and therefore growth, and magnesium ions needed to make chlorophyll. If no chlorophyll is made then photosynthesis cannot take place so no glucose is produced and so no/poor growth Plants have Physical defence responses to resist invasion of microorganisms. •• Cellulose cell walls. •• Tough waxy cuticle on leaves. •• Layers of dead cells around stems (bark on trees) which fall off. Chemical plant defence responses. •• Antibacterial chemicals. • Poisons to deter herbivores. Mechanical adaptations. •• Thorns and hairs deter animals.

		I ne Sutton	Academy
 Leaves which droop or curl when 			/
touched.			
 Mimicry to trick animals. 			

SCIENCE- Biology Year 10

03 – Transport systems

Lesson/Learning	Intended Knowledge:	Prior Knowledge:	Working Scientifically	Tiered Vocabulary	Support
Sequence	Students will know that	In order to know this, students need to already know that		and Reading Activity	
Lesson 1: Components of blood	Students will know that blood is a mixture of a watery solution called plasma, red blood cells, white blood cells and platelets. They will know that the function of plasma is to dissolve substances e.g., products of digestion and waste products e.g., urea and carbon dioxide and also to carry hormones. The function of red blood cells is to carry oxygen because the red blood cells have haemoglobin. White blood cells have the function of fighting disease (see topic B3).	Students will recall that blood carrying oxygen is called oxygenated blood. Blood without oxygen is known as deoxygenated blood. Students will recall that red blood cells and white blood cells are specialised cells. They will describe that red blood cells have no nucleus and are packed with haemoglobin; white blood cells have enlarged nuclei and this allows them to fight infections.		Plasma Platelets Urea Hormone Haemoglobin Aperture Oxygenated enlarged	Knowledge Organiser B2
Lesson 2: Blood vessels	They will know that there are three types of blood vessel: capillaries, arteries and veins. Capillaries are narrow aperture and have walls that are one cell thick; this makes them suitable vessels for exchange of substances. Arteries have muscular walls that assist with blood flow (emphasis is NOT to be 'pump blood') Veins are wider lumen but have valves that prevent backflow of blood and therefore maintain circulation in one direction. Students will know how to relate structure of blood vessel to the role played by the vessel e.g., size of lumen, type of wall.	Students will now that blood travels round our body in tubes. Students will know that arteries carry blood away from the heart and veins bring blood to the heart.		Lumen Capillaries	
Lesson 3: The heart and Circulation.	Students will know that the heart has 4 chambers known as right & left atria and right & left ventricles. They will know that the main vein enters the heart at the right atrium. The main artery enters the heart at the left atrium. The blood leaving the right ventricle follows the pulmonary artery and	Students need to know the terms oxygenated and deoxygenated blood. They need to recall that all muscles need oxygen and glucose the function. Blood delivers oxygen and glucose and blood removes waste e.g., carbon dioxide to prevent toxins building up that could damage cells. They must know that arteries travel away	Making Observations of biological specimens and produce labelled scientific drawings Using apparatus correctly Working Safely in the lab Making & Recording observations	Chamber Ventricle Atrium Pulmonary Coronary Cardiac Toxins Vena cava	Knowledge Organiser B2 <u>https://www.bbc.co.uk/bitesize/guides/</u> <u>zhnk7ty/revision/4</u> 4 models of the heart in AG18

the blood returning from the lungs travels in	from the heart and veins travel towards the	Aorta	Can use a glass stirring rod to show
the pulmonary vein. They will know that the	heart together with the idea that arteries are	Pace-maker	blood flow through a dissection heart
heart is a muscle. The walls of the heart on	carrying oxygenated blood and veins carry		model
the left side are thicker because they need to	deoxygenated blood. (* exceptions introduced in		
use more force to push blood to the furthest	this lesson)		
parts of the body. The muscle is supplied			
with oxygen and nutrients by its own blood			
vessels. The main vessel supplying the heart			
muscle (cardiac muscle) is called the			
coronary artery. CRITICAL that students learn			
the exceptions that the pulmonary artery			
carries deoxygenated blood and the			
pulmonary vein carries oxygenated blood.			
Students will know how to describe the path			
that blood takes as it travels around the			
body. They will state that blood leaves the			
heart in the aorta and then travels around			
the network of blood vessels towards			
respiring cells in vessels called arteries. Blood			
in the arteries is loaded with oxygen and			
glucose that respiring cells need. To reach			
the cells, blood passes from arteries into			
capillaries where exchange of substances			
occurs because the walls of capillaries are			
very thin. Oxygen and glucose leave the			
blood and enter the respiring cells.			
Meanwhile, carbon dioxide passes from the			
cells into the blood to be carried away. The			
blood that leaves the capillaries is now called			
deoxygenated blood. This travels back			
towards the heart in vessels called veins			
eventually entering the heart in a main vein			
called the vena cava. Once in the heart,			
deoxygenated blood moves from the right			
atrium to the right ventricle and then leaves			
the heart to travel to the lungs in a new			
vessel known as the pulmonary artery. From			
the lungs, blood returns to the heart in a			
vessel known as the pulmonary vein.			
Students will learn that a typical heart beats			
approximately 60 - 80 times per minute at			
rest and that during exercise this can			
increase to approximately 140 beats per			

Lesson 4: Lungs & gas	minute. The reason for the increase is to provide MORE oxygen and glucose to respiring cells. Students will be able to name each part of the human breathing system: trachea,	Students will know the composition of air: 78% nitrogen, 20%oxygen and less than 1% carbon		Trachea Alveoli Diaphragm	Knowledge Organiser B2 https://www.bbc.co.uk/bitesize/guides/ zod4wxs/revision/1
exchange	bronchus, bronchioles, alveoli, diaphragm, intercostal muscles. Students will know the role of each part: the muscles are involved in changing the volume of the lung capacity i.e. breathing in and out; the ribs protect the delicate lungs by encasing them; the trachea, bronchus, bronchioles and alveoli are the passageways that air travels through to eventually get into our blood. Gas exchange occurs in the tiny alveoli. The alveoli increase the surface area of our lungs to ensure lots of oxygen can pass through into the blood. Inhalation is when air is breathed in. Exhalation is when gas is breathed out. Students will know how the composition of gas changes between breathing in and then breathing out (more oxygen before gas exchange; nitrogen is not absorbed into the blood. They will know how the rate of breathing changes during exercise and why this is necessary. They will describe how the alveoli are adapted for gas exchange (Topic B1).	dioxide. They will know how alveoli are adapted for gas exchange: moist membranes, increased surface area, thin epithelium		Intercostal Inhale Exhale Composition	Lungs bell jar model
Lesson 5: Coronary heart disease	Students will know that coronary heart disease is an example of a non- communicable disease (it cannot be caught or spread to other people) It is a condition that affects the heart and the heart's blood vessels and it results from blocked coronary arteries. Blockages mean that blood carrying vital oxygen and glucose cannot reach the cardiac muscle. Blockages result from persistent poor diet and other lifestyle	Recall the names of parts of the heart. Know that the heart has its own blood supply: coronary arteries Recall that all muscles need a supply of oxygen and glucose to function via respiration. Recall from KS3 that a healthy diet maintains optimum body conditions/function. Poor diets affect how our bodies form and perform. Some diseases can be spread (communicable) and others cannot be transmitted (non-communicable).	WS 1.4 WS 1.3 Evaluate methods of treatment bearing in mind the benefits and risks associated with the treatment.	Coronary Artery Cholesterol Obesity Pressure Risk factor Cardio-vascular Stent Statin	Knowledge Organiser B2 https://www.bbc.co.uk/bitesize/guides/ zhnk7ty/revision/6#:~:text=The%20cor onary%20arteries%20supply%20blood, heart%20muscle%20is%20cut%20off. Models of this in AG18 & Prep room 1 Coronary artery can be found on heart dissection samples

				The Sutton Academy	
Lesson 6: Plant organs and leaf structure	choices e.g., high cholesterol, smoking, high salt intake, high blood pressure, low exercise levels, obesity AND in families where there is a history of CHD. The term 'risk factor' means things that increase your chance of developing a condition'. Cardio-vascular disease (CVD) includes CHD but also refers to strokes, aortic disease and arterial disease. Students will know how CHD can be treated with mechanical devices called stents or with chemical intervention known as statins. The stent is a wire mesh that supports the walls of the artery and maintain a thoroughfare for red blood cells, etc. Statins are drugs that reduce the formation of blockages in blood vessels and lower cholesterol levels. Students will know how to evaluate both alternatives. Students will know that the leaf is a plant organ along with roots, stem and flowers. They will know that it is made of distinct and observable tissues known as upper epidermis, palisade mesophyll, sponge mesophyll, lower epidermis (including guard cell pairs surrounding the spaces known as stomata). They will know that the upper surface is often protected by a waxy cuticle. They will know the role of guard cells in supporting gas exchange and preventing unnecessary water loss. They will know the role of root hair cells in facilitating water uptake.	They will know that a plant is a multicellular organism with 4 main organs: leaf, roots, stem and flower. They will know that specialised cells known as phloem and xylem are located in the stems of plants. They will recall the adaptation of root hair cells to support water and mineral uptake.	Epidermis Mesophyll Stomata Humidity	Knowledge organiser B2	
Lesson 7: Xylem and Phloem	Students will know how water is moved(transpiration) from the soil through the roots, up the stem and into the leaves to support cells that are carrying out photosynthesis. They will know how the phloem is involved in movement of glucose (translocation) to all parts of the plant to support life processes. Students will learn how various factors affect the rate of these transport processes e.g., humidity, air movement, air temperature.	Students will already know that the stem support the plant ensuring it is upright. The stem also carries water from the roots up to the rest of the plant.	Phloem Xylem Transpiration Translocation		

SCIENCE- Biology Year 10

04 Digestive system

Lesson/Learning Sequence	Intended Knowledge: Students will know that	Prior Knowledge: In order to know this, students need to already know that	Working Scientifically	Tiered Vocabulary and Reading Activity	Support
Lesson 1: Digestive system, definition and bio mols.	Students will know that food travels through the digestive system passing through the following organs in sequence: mouth, oesophagus, stomach, small intestine, large intestine and leaves via the anus. They will know that enzymes are added break down the food. They will know that the stomach secretes HCI and the liver produces bile which is stored in the gall bladder. Students will know that digestion involves the chemical breakdown of large insoluble molecules that cannot be absorbed into small soluble molecules that can be absorbed.	Students need to already know that the body makes chemicals called enzymes. In Y7 they will have covered the names of the organs involved in the digestive system. Students need to already know how small intestines are adapted for optimum exchange of substances (Y10, topic 1)		Oesophagus Pancreas Enzyme Saliva Gastric juice Amylase Carbohydrase Protease Lipase Substrate Products Insoluble Villi Secrete absorb	Knowledge Organiser B2 <u>https://www.bbc.co.</u> <u>uk/bitesize/guides/28</u> <u>9mk2p/revision/1</u> Bums to gum 2 models of torsos Large water bottle with holes & a long 'food molecule'
Lesson 2: Food test lesson 1 Lesson 3: Food test lesson 2	Students will know that Benedict's reagent is used to test for glucose: if present it will change from clear blue to brick red precipitate. Biuret solution is the reagent to demonstrate the presence of protein; the positive test result is a lilac solution. Ethanol is the reagent used to show the presence of fats; a positive result is observed if there will be a cloudy white precipitate. Students will know how to prepare samples of food to be tested with the reagents listed above. They will use a pestle and mortar to grind the food to a paste. They will filter the mixture to remove insoluble material. They will use the filtrate test with individual reagents using a fresh sample for each reagent. They will work safely with the	Students need to already know that there are three main nutrients in food: carbohydrates, proteins and fats. These are the basic molecules needed by humans. Students need to already know how to use a pestle and mortar; how to use a filter paper with a funnel; how to work safely with apparatus and chemicals in a laboratory. They will be able to design a suitable results table with clear column headings (name of reagent) and labels for rows (name of food being tested.)	Using Apparatus Working safely Making and recording observations	Reagent Precipitate Pestle and mortar	Knowledge Organiser B2 https://www.bbc.co. uk/bitesize/guides/zs 9krwx/revision/2 Banana food test with starch molecules & sugar – see science technicians folder, biology CPD
	cnemicals by referring to hazard symbols and CLEAPPS wallets on display in laboratories. They will record all observations in a suitable results table.				

					57	
Lesson 5: Enzymes	Students will know that enzymes are biological catalysts. They speed up the chemical digestion of nutrients in food. They will know that enzyme models involve a shape in the structure known as the active site. They will know that some enzymes work best in high pH whilst others work better in low ph. They will know that all enzymes work best at an optimum temperature. In humans, the optimum is 37oC.	Students need to already know that food has key nutrients known as carbohydrates, proteins and fats (lipids). They will know the products of digestion: amino acids, fatty acids and glycerol and glucose. Students need to already know how to interpret graphs by reading the labels on the x and y axis to deduce what the changes on the graph represent.	WS 1.2 Students should be able to use other models to explain enzyme action.	Enzyme Catalyst Fatty acid Glycerol Active site Denatured Optimum	The Sutton Action Knowledge Organiser B2 https://www.bbc.co. uk/bitesize/guides/z8 8hcj6/revision/1 Cat milk practical Natural sources of enzymes – including pineapple on jelly – see science technicians folder, biology CPD	cademy
Lesson 6: Factors affecting enzyme activity	They will know that the active site can change shape in different PH or at different temperatures. This change may affect how well the enzyme can breakdown substrates. We say the enzyme of denatured. Students will know how enzymes are affected by changes in the pH or temperature. They will know that when temperatures exceed the optimum, the enzyme becomes denatured.				Photographic film practical – see science technicians folder, biology CPD	
Lesson 7: How do enzymes work	Student will know that there are 3 groups of enzymes: carbohydrates, proteases, and lipases. They will state that amylase from the salivary gland (a carbohydrase) digests starch into glucose; protease produced by the stomach and pancreas digests protein into amino acids; lipase made in the pancreas breaks down fats into fatty acids and glycerol. Bile is not an enzyme but aid the digestion of fat by emulsifying the fats providing a larger surface area for lipase to act	Bile helps to digest fat		Amylase Protease Lipase	https://www.youtub e.com/watch?v=gUn cqL1ul8Q	
Lesson 8: Required Practical - effect of pH on enzyme activity	Students will know that we can simulate digestion in a test tube using enzyme and substrate solution. We can use the model to investigate optimum conditions for amylase. They will know that a spotting tile and a pipette are used to when testing samples because only small quantities are required. They will evaluate what a suitable time interval would be between taking samples in order to ensure that suitable data is collated.	Students will know the 3 types of variable (Independent + the factor that is being investigated, dependent = the factor that can be measured to allow us to see the effect and control = factors that must stay the same throughout the investigation.) They will recall that the enzyme called amylase controls the breakdown of starch into glucose. They will know that iodine can be used to identify the presence of starch and that a positive result involves the orange colour changing to blue-black. They will	AID CAR Forming a conclusion and explaining results using high level scientific terminology Presenting results in graphical form Further investigations	Simulation Model Substrate Enzyme Pipette Interval	Knowledge organiser B2	

	Students will know how to use iodine	recall that room temperature is not the optimum		
	solution to demonstrate that starch is or is	temperature for enzymes and link this to the need to		
	not present in a solution. They will know how	conduct the main parts of the activity in a water bath		
	to use the hazard symbols and CLEAPSS cards	(apart from the sampling in the spotting tile).		
	to ensure safe practical work. They will know	Students will know how to use CLEAPSS safety cards		
	how to use a spotting tile to track the colour	to carry out risk assessments. Students will know how		
	changes over time. They will know how to	to use AIDCAR to identify the apparatus, variables		
	interpret qualitative data in their results in	(independent, dependent and control): pH, time for		
	order to infer the optimum pH for amylase	the reaction to be complete and then control		
	activity.	concentration, temperature, volumes.		
Lesson 9:	Absorption occurs in the small intestine. The		Villi	https://www.youtub
Adaptations	small intestine has structures known as villi		Microvilli	e.com/watch?v=177
for efficiency	that increase the surface area that facilitates		Concentration	<u>3d-z6jil</u>
	passage of the products of digestion into the		gradient	
	blood.			
	Students will know how the small intestine is			
	adapted for absorption of soluble products			
	of digestion.			
	They will describe the thin walls provide a			
	short diffusion pathway, good blood supply			
	maintains a concentration gradient, villi and			
	microvilli provide a large surface area, lots of			
	mitochondria to release energy for active			
	transport of nutrients.			

SCIENCE- Biology Year 10

05 Bioenergetics

	+ oxygen Students should recognise the chemical symbols: (Light & Chlorophyll can be above& below the arrow) 6CO2 + 6H2O ->6O2 + C6H12O6. Students should be able to describe photosynthesis as an endothermic reaction in which energy is transferred from the environment to the chloroplasts by light.	products of, photosynthesis, and a word summary for photosynthesis The dependence of almost all life on Earth on the ability of photosynthetic organisms, such as plants and algae, to use sunlight in photosynthesis to build organic molecules that are an essential energy store and to maintain levels of oxygen and carbon dioxide in the atmosphere The adaptations of leaves for photosynthesis.	and definitions.	or requiring the absorption of heat. Reactant – A substance which takes part in a reaction. Product – A substance formed as a result of a chemical reaction.	ws7p3 https://www.savemy exams.co.uk/gcse/bi ology/aqa/18/revisio n-notes/4- bioenergetics/4-1- photosynthesis/4-1- 1-photosynthetic- reaction/ B4 Knowledge Organiser
Lesson 2: Factors that affect the rate of photosynthesis	Students should be able to explain the effects of temperature, light intensity, carbon dioxide concentration, and the amount of chlorophyllin the rate of photosynthesis. Students should be able to: Measure and calculate rates of photosynthesis Extract and interpret graphs of photosynthesis rate involving one limiting factor Plot and draw appropriate graphs selecting appropriate scale for axes Translate information between graphical and numeric form. (HT only) These factors interact and any one of them may be the factor that limits photosynthesis. (HT only) Students should be able to explain graphs of photosynthesis rate involving two or three factors and decide which is the limiting factor. (HT only) Students should understand and use inverse proportion. the inverse square law and light intensity in the context of	The reactants in, and products of, photosynthesis, and a word summary for photosynthesis The dependence of almost all life on Earth on the ability of photosynthetic organisms, such as plants and algae, to use sunlight in photosynthesis to build organic molecules that are an essential energy store and to maintain levels of oxygen and carbon dioxide in the atmosphere The adaptations of leaves for photosynthesis.	(HT Only) - WS 1.4 Explain every day and technological applications of science; evaluate associated personal, social, economic and environmental implications; and make decisions based. WS 4.1 Use scientific vocabulary, terminology and definitions.	Chlorophyll - a green pigment, present in all green plants. Concentration - the relative amount of a given substance contained within a solution or in a particular volume of space. Pigment - the natural colouring matter of animal or plant tissue. Limiting - setting or serving as a limit to something	https://www.bbc.co. uk/bitesize/topics/zg ws7p3 https://www.savemy exams.co.uk/gcse/bi ology/aqa/18/revisio n-notes/4- bioenergetics/4-1- photosynthesis/4-1- 1-photosynthetic- reaction/ B4 Knowledge Organiser

Intended Knowledge:

Students will know that...

Photosynthesis is represented by the

equation: carbon dioxide + water ->glucose

Lesson/Learning

Sequence

Lesson 1: Photosynthesis

	 photosynthesis. (HT only) Limiting factors are important in the economics of enhancing the conditions in greenhouses to gain the maximum rate of photosynthesis while still maintaining profit. MS 3a, 3d (HT only) WS 1.4 Use data to relate limiting factors to the cost effectiveness of adding heat, light or carbon dioxide to greenhouses. Evaluate the use of greenhouses and hydroponics in terms of economics 				
Lesson 3: Required practical Activity 5: investigate the effect of light intensity on the rate of photosynthesis HIGHER ONLY	Required practical activity 5: investigate the effect of light intensity on the rate of photosynthesis using an aquatic organism such as pondweed. Students will understand and use inverse proportion – the inverse square law and light intensity.	Control, independent & dependant variablesThe reactants in, and products of, photosynthesis, and a word summary for photosynthesis -The dependence of almost all life on Earth on the ability of photosynthetic organisms, such as plants and algae, to use sunlight in photosynthesis to build organic molecules that are an essential energy store and to maintain levels of oxygen and carbon dioxide in the atmosphere -The adaptations of leaves for photosynthesis.	Apparatus used to measure O2 gas production (variables) Using a thermometer to monitor temperature Rate of production of gas Test a hypothesis based on scientific theories/explanations Repeatability Record observations Processing data into graphical form Inverse square law	Intensity – the quality or state of being intense Aquatic – relating to water.	https://www.b bc.co.uk/bitesiz e/topics/zgws7 p3 https://www.yo utube.com/wat ch?v=id0a0_0d EwA https://www.sa vemyexams.co. uk/gcse/biology /aqa/18/revisio n-notes/4- bioenergetics/4 -1- photosynthesis /4-1-1- photosynthetic- reaction/ B4 Knowledge Organiser

	• Anaerobic respiration in muscles is represented by the equation: glucose				
	 lactic acid As the oxidation of glucose is incomplete in anaerobic respiration much less energy is transferred than in aerobic respiration Compare and contrast aerobic and anaerobic respiration. 				
Lesson 5b Fermentation of Yeast	 Anaerobic respiration in plant and yeast cells is represented by the equation: glucose -> ethanol + carbon dioxide Anaerobic respiration in yeast cells is called fermentation and has economic importance in the manufacture of bread and alcoholic drinks 		Investigating the effect of temperature on fermentation	Fermentation	
Lesson 6: Changes during exercise	 During exercise the human body reacts to the increased demand for energy. The heart rate, breathing rate and breath volume increase during exercise to supply the muscles with more oxygenated blood. If insufficient oxygen is supplied anaerobic respiration takes place in muscles. The incomplete oxidation of glucose causes a build-up of lactic acid and creates an oxygen debt. During long periods of vigorous activity muscles become fatigued and stop contracting efficiently. Investigations into the effect of exercise on the body. (HT only) Blood flowing through the muscles transports the lactic acid to the liver where it is converted back into glucose. Oxygen debt is the amount of extra oxygen the body needs after exercise to react with the accumulated lactic acid and remove it from the cells. 	 Heart Rate and breathing rate increase during exercise. Blood transport oxygen around the body. 		Heart rate – the speed at which the heart beats. Breathing rate - The number of breaths you take per minute.	https://www.bbc.co. uk/bitesize/topics/zg ws7p3 https://www.savemy exams.co.uk/gcse/bi ology/aqa/18/revisio n-notes/4- bioenergetics/4-1- photosynthesis/4-1- 1-photosynthetic- reaction/ B4 Knowledge Organiser

						٦
Lesson 7: Metabolism	 Students should be able to explain the importance of sugars, amino acids, fatty acids and glycerol in the synthesis and breakdown of carbohydrates, proteins and lipids. Metabolism is the sum of all the reactions in a cell or the body. The energy transferred by respiration in cells is used by the organism for the continual enzyme-controlled processes of metabolism that synthesise new molecules. Metabolism includes: conversion of glucose to starch, glycogen and cellulose the formation of lipid molecules from a molecule of glycerol and three molecules of fatty acids the use of glucose and nitrate ions to form amino acids which in turn are used to synthesise proteins respiration breakdown of excess proteins to form urea for excretion. All of these aspects are covered in more detail in the relevant specification section but are linked together here. 	 aerobic and anaerobic respiration in living organisms, including the breakdown of organic molecules to enable all the other chemical processes necessary for life A word summary for aerobic respiration The process of anaerobic respiration in humans and micro-organisms, including fermentation, and a word summary for anaerobic respiration The differences between aerobic and anaerobic respiration in terms of the reactants, the products formed and the implications for the organism. 	WS 4.1 Use scientific vocabulary, terminology and definitions.	Metabolism - The sum of all the reactions in a cell or the body These reactions synthesise (make) molecules or break them down and involve enzymes Enzyme – A Biological catalyst which speeds up chemical reactions.	Ine Sutton / https://www.bbc.co. uk/bitesize/topics/zg ws7p3 https://www.savemy exams.co.uk/gcse/bi ology/aqa/18/revisio n-notes/4- bioenergetics/4-1- <u>photosynthesis/4-1- 1-photosynthetic- reaction/</u> B4 Knowledge Organiser	Academy

SCIENCE- Biology Year 10

06 Defence against disease

					The Sutton Ac	cademv
Lesson/Learning Sequence	Intended Knowledge: Students will know that	Prior Knowledge: In order to know this, students need to already know that	Working Scientifically	Tiered Vocabulary and Reading Activity	Support	
Lesson 1: Non-specific defences and WBC action	Non-specific defence systems of the human body against pathogens, including the: skin which forms a complete barrier, ciliated cells covered in mucus which traps pathogens and cilia waft to the throat, stomach acid, tears which contain enzymes. If a pathogen enters the body the immune system tries to destroy the pathogen. Pathogens have antigens on their surface. Antigens are proteins found on the surface of pathogens. White blood cells recognise antigens that don't belong to the body and respond to destroy the pathogen White blood cells help to defend against pathogens by: phagocytosis – They engulf and ingest the pathogen antibody production – They make specific antibodies to attach to the antigens on the pathogens to destroy them antitoxin production- Produce antitoxins to neutralise the toxins made by bacterial cells. Antibodies remain in the body providing immunity to a particular disease. Students should be able to describe a graph comparing primary and secondary response.	Students should have some knowledge of how diseases spread and ways to reduce the spread of disease. Students will already know that white blood cells are in our blood for fight infections. Students will know the immune system is the system in the body responsible for defending the body against disease. Student will already know the non specific first lines of defence (skin, HCl, mucus, cilia)	Describe and evaluate ways of tackling problems (WS1.4) Antigens Antibodies Toxins Antitoxins Ingest Enzymes Reading task- White blood cells	Microorganisms Pathogens Contaminated Symptoms Antigens Antibodies Toxins Antitoxins Ingest Enzymes Reading task- White blood cells	B3 infection and response KO https://www.bbc.co. uk/bitesize/guides/zx r7ng8/revision/1 B3 infection and response KO https://www.bbc.co. uk/bitesize/guides/zx r7ng8/revision/8 https://www.bbc.co. uk/bitesize/guides/zx r7ng8/revision/9 https://www.youtub e.com/watch?v=p50 WjdGWN1Q https://www.youtub e.com/watch?v=gWS WWPZYGHU	
Lesson 2: Vaccinations	Students will learn how the first vaccine was developed by looking at the story of James Phipps. Students should be able to explain how vaccination will prevent illness in an individual, and how the spread of pathogens can be reduced by immunising a large proportion of the population. Vaccination involves introducing small quantities of dead or inactive forms of a pathogen into the body to stimulate the white blood cells to produce antibodies. If	Stuaents WIII know that vaccinations are given as a way to reduce the spread of disease Students will know that some vaccines have unwanted side effects.	Processing data into graphical form Interpreting data.	comprehension	https://www.bbc.co. uk/bitesize/guides/z8 fkmsg/revision/1 https://www.youtub e.com/watch?v=23fQ scOSqVU	

	the same pathogen re-enters the body the				
	white blood cells respond quickly to produce				
	the correct antibodies, preventing infection.				
	Some people choose not to get vaccinated as				
	they are scared of needles, worried about				
	side effects, it goes against religious beliefs.				
Lesson 4:	Students will learn the Traditionally drugs	Plant adaptations. Chemicals produced by plants	Students should be	Toxicity	B3 infection and
Discovery and	were extracted from plants and	are an adaptation to prevent them being eaten	able to describe the	Efficacy	response KO
development	microorganisms.	Drugs are chemicals that effect the body.	process of discovery	Dosage	
of drugs	Painkillers include paracetamol, ibuprofen	KS3- The effects of recreational drugs (including	and development of	Antibiotics) Painkillers	
	The heart drug digitalis originates from	substance misuse) on behaviour, health and life	potential new	Placebo	
	foxgloves.	processes.	medicines, including	1.000.00	
	The painkiller aspirin originates from willow.		preclinical and	Reading Activity:	
	Penicillin was the first antibiotic discovered	Students may hear the term 'drugs' and have the	clinical testing.	Drugs discovery	
	by Alexander Fleming from the Penicillium	misconception that all drugs are dangerous.	WS1.4 Explain		
	mould.		everyday		
	Most new drugs are synthesised by chemists		applications of		
	in the pharmaceutical industry. However, the		science		
	starting point may still be a chemical				
	extracted from a plant.		WS1.6 Understand		
	New medical drugs have to be tested and		the importance of		
	trialled before being used to check that they		peer review		
	are safe and effective.				
	New drugs are extensively tested for toxicity,				
	efficacy and dose.				
	Preclinical testing is done in a laboratory				
	using cells, tissues and live animals.				
	Clinical trials use healthy volunteers and				
	patients.				
	Very low doses of the drug are				
	given at the start of the clinical trial.				
	If the drug is found to be safe,				
	further clinical trials are carried out				
	to find the optimum dose for the				
	drug.				
	In double blind trials, some patients are				
	given a placebo.				

Lesson 5 & 6 – Required practical (efficacy of antiseptics) TRIPLE ONLY CARRY OUT FULL PRACTICAL	 Students will learn that bacteria reproduce by a process of binary fission once every 20 minutes] Students will investigate the effect of antiseptics or antibiotics on bacterial growth using agar plates and measuring zones of inhibition. Students will learn that aseptic techniques ensure the microorganisms being investigated do not escape or become contaminated with an unwanted microorganism. This can be achieved by: Wiping bench with disinfectant/alcohol. Not fully removing the lid . Using sterile loops when transferring cultures. Flaming culture bottle necks to prevent contamination. Sterilising (using an autoclave) or disposing of all used equipment Incubation at 25oC 	 Discovery of antibiotics by Alexander Fleming involved the use of bacterial growth on petri dishes Antibiotics are only used to treat bacterial infections Students will already know the names of some common antimicrobial cleaning products Students should already know that πr2 is used to calculate area of a circle. Students should already know how to express answers in standard form 	In doing this practical student should cover these parts of the apparatus and techniques requirements. AT 1 – use appropriate apparatus to record length and area. AT 3 – use appropriate apparatus and techniques to observe and measure the process of bacterial growth. AT 4 – safe and ethical use of bacteria to measure physiological function and response to antibiotics and antiseptics in the environment. AT 8 – the use of appropriate techniques and qualitative reagents in problem-solving contexts to find the best antibiotic to use or the best concentration of antiseptic to use. <u>Key opportunities for skills</u> <u>development:</u> In doing this practical there are key opportunities for students to develop the following skills. WS 2.1 – develop hypotheses about the effectiveness of the antibiotics or antiseptics to be used. WS 2.2 – plan experiments to make observations, test hypotheses and explore phenomena. WS 2.4 – have due regard for accuracy of measurements, and health and safety when using bacterial cultures.	Aseptic techniques Clear zone Zone of inhibition Antimicrobial Reproducible results Reading a method	B3 KQ TRIPLE ONLY	

TRIPLE ONLY -	Monoclonal antibodies are produced from a	•	<i>White blood cells produce antibodies that stick to</i>	MS 5c – calculate cross-sectional areas of bacterial cultures and clear agar jelly using πr2. WS 1.3	Hybridoma	B3 KO TRIPLE ONLY
Monoclonal antibodies (HT only)	single clone of cens. The antibodies are specific to one binding site on one protein antigen and so are able to target a specific chemical or specific cells in the body. They are produced by stimulating mouse lymphocytes to make a particular antibody. The lymphocytes are combined with a particular kind of tumour cell to make a cell called a hybridoma cell. The hybridoma cell can both divide and makes the antibody. Single hybridoma cells are cloned to produce many identical cells that all produce the same antibody. A large amount of the antibody can be collected and purified. Students should be able to describe some of the ways in which monoclonal antibodies can be used. Some examples include: for diagnosis such as in pregnancy tests in laboratories to measure the levels of hormones and other chemicals in blood, or to detect pathogens in research to locate or identify specific molecules in a cell or tissue by binding to them with a fluorescent dye to treat some diseases: for cancer the monoclonal antibody can be bound to a radioactive substance, a toxic drug or a chemical which stops cells growing and dividing. It delivers the substance to the cancer cells without harming other cells in the body. Students are not expected to recall any specific tests or treatments but given			Appreciate the power of monoclonal antibodies and consider any ethical issues.	Reading activity- Uses of monoclonal antibodies	https://www.youtub e.com/watch?v=vKn8 u9MoEIY https://www.youtub e.com/watch?v=I6jE9 9Fjbvo https://www.bbc.co. uk/bitesize/guides/zt 8t3k7/revision/1 https://www.youtub e.com/watch?v=XrU W54Ea598

	appropriate information they should be able to explain how they work. Monoclonal antibodies create more side effects than expected. They are not yet as widely used as everyone hoped when they were first developed.			Mining	
Plant defences	Plant diseases can be detected by: stunted growth spots on leaves areas of decay (rot) growths malformed stems or leaves discolouration the presence of pests. Identification can be made by: reference to a gardening manual or website taking infected plants to a laboratory to identify the pathogen using testing kits that contain monoclonal antibodies. Plants can be infected by a range of viral, bacterial and fungal pathogens as well as by insects. Students should review tobacco mosaic virus as a viral disease, black spot as a fungal disease and learn that aphids are insects which pierce the phloem to obtain glucose from the plant and as a consequence the plant would not have as much glucose for growth. Plants can be damaged by a range of Ion deficiency conditions: stunted growth caused by nitrate deficiency (yellow leaves) chlorosis (yellow leaves) caused by magnesium deficiency. Nitrate ions are needed for protein synthesis and therefore growth, and magnesium ions needed to make chlorophyll. If no chlorophyll	students will already know that TMV is a plant disease cause by a pathogen Students will already know that rose black spot is a fungal disease that affects plants. Students should already know that the phloem carries sugars for the plant	WS1.4- Everyday applications	Chlorosis Deterrent Reading Activity- Plant defences	B3 KO TRIPLE ONLY
	is made then photosynthesis cannot take				

SCIENCE- Biology Year 10

07 Nervous system

Lesson/Learning	Intended Knowledge:	Prior Knowledge:	Working Scientifically	Tiered Vocabulary	Support	auerny
Sequence Lesson 1 - Structure and function of nerve cells	Students will know that The 2 systems involved in the control are nervous responses and chemical responses A reflex is a fast automatic response that doesn't involve the conscious part of the brain Students should recognise the different types of neurones.(Sensory, motor, relay neurones)	In order to know this, students need to already know that Nerve cells carry electrical impulses around the body. They are specialised cells that are long and thin and insulated.		and Reading Activity Homeostasis Internal conditions Enzymes Optimal	https://www.bb c.co.uk/bitesize /guides/zq4mk 2p/revision/1 https://www.bb c.co.uk/bitesize /guides/zprxy4j /revision/1	
Lesson 2 Required Practical Reaction Time	Students will learn that reaction time is the length of time taken to respond to a stimulus and certain factors can cause a longer or shorter reaction time (not fast or slow) Units are milliseconds Student need to be aware of the equation used to convert distance into reaction time $t = \sqrt{2d/a}$ Students should also be able to use a conversion table.	Students may already know that alcohol and drugs can affect reaction times.	AT1 Use of apparatus to record time AT3 Processing data to calculate reaction time AT4 safe and ethical use of humans to measure physiological function of reaction time and response to a chosen factor WS 2.1 Design a hypothesis WS 2.2 Describe a method, identify variables WS 2.3 Suggest a method WS 2.4 Reducing risk and awareness of Health and Safety	Reaction time	<u>https://www.bb</u> <u>c.co.uk/bitesize</u> <u>/guides/zprxy4j</u> <u>/revision/4</u>	
Lesson 3 – Reflex arc & Synapses	A reflex is a fast automatic response that doesn't involve the conscious part of the brain The stages are: Stimulus- A change in the environment Receptors- Cells that detect change Sensory neurone- carries the impulse to the CNS Relay neurone- connects the sensory and motor neurone in the CNS Motor- carries the impulse from the CNS to the effector Effector- muscle or a gland Response- what the body does Students should recognise the different types of neurones.	Students will have life experiences of responding quickly to dangers in the environment. Students will know that alcohol and drugs affect our nervous system.		Receptors Coordination centre Effectors Stimuli Reflex Synapse	https://www.y outube.com/w atch?v=HiuXfb wND9s	

Lesson/Learning	Intended Knowledge:	Prior Knowledge:	Working Scientifically	Tiered Vocabulary	Support	loadeniy
Sequence	Students will know that	In order to know this, students need to already know that		and Reading Activity		
HIGHER ONLY	A synapse is a gap between 2 neurones Higher tier students will learn how impulses diffuse across a synapse as a chemical message.					
TRIPLE ONLY – Lesson 5 - The Brain	Students will learn that the brain is made of billions of neurones and that different regions are responsible for different functions. Students will identify and describe the role of the: Cerebral Cortex (Outer layer) which is split into two hemispheres and is highly folded. It controls intelligence, personality, conscious thought and high-level functions, such as language and verbal memory Cerebellum- controls balance, co-ordination of movement and muscular activity. Medulla which controls unconscious activities such as heart rate and breathing rate, Pituitary- master gland Hypothalamus which is the regulating centre for temperature and water balance within the body. HIGHER ONLY- Students will learn that the brain is a difficult organ to study. Scientists can use non invasive methods to map areas of the brain using electrical stimulation and MRI scanning techniques. EEGs are then created and studied.	Students should already know that the brain is part of the CNS	WS 1.5 Evaluate the benefits and risks of procedures carried out on the brain and nervous system	Hemisphere Neurology MRI EEG Non invasive Phineas Gage Reading Activity	https://www.bb c.co.uk/bitesize /quides/zprxy4j /revision/5	
TRIPLE ONLY – Lesson 6 – The eye and Vision	Students will learn that light enters the eye via the pupil. The cornea refracts light onto the lens which refracts the light onto the retina which contains photoreceptors and it located at the back of the eye. The retina detects light	Students will know the eye is the sense organ for vision. Students would already have some knowledge af the location of the pupil. Students will already know that problems with vision can be correct through the use of glasses or surgery.	WS1.2 Interpret ray diagrams WS1.4 The use of technologies in science	Accommodation Concave Convex Refract Myopia Hyperopia	<u>https://www.bb</u> <u>c.co.uk/bitesize</u> /guides/zprxy4j /revision/7	

Lesson/Learning	Intended Knowledge:	Prior Knowledge:	Working Scientifically	Tiered Vocabulary	Support	onneddenny
Sequence	Students will know that	In order to know this, students need to already know that		and Reading Activity		
	and sends an electrical impulse along the	Students should already know that muscles contract			Several	
	optic nerve to the brain.	Students will describe light as rays and already be			models of	
	The sclera is the white part of the eye. The iris	able to draw ray diagrams.			the eve	
	is the coloured part of the eye and contains				theeye	
	muscles the control the size of the pupil.					
	Accomodation is the process of changing the					
	shape of the lens to focus on near or distant					
	objects.					
	To focus on a distant object the lens would be					
	flat so only slight refraction, the suspensory					
	ligaments pull tight and the ciliary muscles					
	relax					
	To focus on close objects the lens is curved					
	(thicker) so stronger refraction, the					
	suspensory ligaments are loose and the ciliary					
	muscles contract					
	Students will learn that Myopia (short sighted					
	cannot see distance the light rays do not					
	focus on the retina correctly which causes a					
	blurred image,					
	Students will learn that myopia is corrected					
	using glasses with a concave lens.					
	Students will learn that hyperopia					
	(longsighted cannot see close up) the light					
	rays do not focus onto the retina correctly and					
	a blurred image is perceived. This is corrected					
	using glasses with a convex lens. Laser eye					
	surgery or contact lenses are also used to					
	correct problems with vision					

SCIENCE- Biology Year 10

08 TRIPLE advanced Ecology

					The Sutton Academy
	survive in the conditions in which	Students need to already know that Plants are living		Functional	https://www.voutube.
	they normally live. These	things and can respond the environment.		adaptatioln.	com/watch?v=DTOto7
	adaptations may be structural			structural	widN8
	behavioural or functional			adantation	https://www.voutube
	Students will know how to explain an			constrict	com/watch2v=2Kt 6P
	students will know now to explain an				<u>COM/Watchrv-2KL_OD</u>
	animal is adapted and now this depends on			extremophile	<u>WIIG4</u>
	the animal habitat.				
				Extremophiles	Bird beaks
	Students will know that plants are adapted			Waxy Cuticle	practical
	to live in their natural environment.			Transpiration	proceed
	Organisms have features (adaptations) that			Photosynthesis	
	enable them to survive in the conditions in			Humidity	
	which they normally live. These adaptations				
	may be structural, behavioural or				
	functional. Some organisms live in				
	environments that are very extreme, such				
	as at high temperature, pressure, or salt				
	concentration. These organisms are called				
	extremonhiles. Bacteria living in deep sea				
	vents are extremonhiles				
lesson 3 -	Students will know that within a	Students need to already know that food chains show	Extract and interpret	Organism	https://www.bbc.co.u
Eesson 5 – Feedina	Students will know that within a	onorgy transfer between organisms, they can provide	information from charts	Species	k/bitosizo/guidos/29p
relationshins	community each species depends	energy transfer between organisms. they can provide		Species Community	K/DILESIZE/BUIUES/2511
and predator	on other species for food, shelter,	appropriate suggestions of what organisms are	graphs and tables.		<u>wtv4/1evision/2</u>
nrev cycles	pollination, seed dispersal etc. If	competing for.		Interdependence	<u>nups://www.kayscien</u>
	one species is removed it can				ce.com/d/predator-
	affect the whole community. This				prey-relationships-2
	is called interdependence. A				
	stable community is one where all				
	the species and environmental				
	factors are in balance so that				
	population sizes remain fairly				
	constant.				
	Students will know how to extract and				
	interpret information from charts, charts				
	graphs and tables relating to the interaction				
	of organisms within a community.				
Lesson 4 -	Students will know that a range of	• Students need to alreadv know that	Apply a range of techniques.	Abundance	https://www.bbc.co.u
Sampling	experimental methods using	Predators are at the top of a food chain	including the use of transects	Distribution	k/bitesize/guides/z83a
Techniques RP	transects and quadrats are used	Producers start a food chain as they can	and guadrats, and the	Habitat	ci6/revision/3
•	hy ecologists to determine the	nhotosynthesise	measurement of an abiotic	Bias	https://www.kavscien
	distribution and abundance of	Students need to already know how to interpret	factor	Transects	ce.com/d/quadrats-
	species in an occustom	aranhs calculate means not and draw appropriate	Estimates of population size	Quadrat	using-transects-?
	species in an ecosystem.	graphs, calculate means piot and under appropriate	hased on sampling	Riotic	
		graphs selecting appropriate scales for the axes	based on sampling.	DIDLIC	

						4
					v v	
					The Sutton Aca	ademy
	Students will know how to measure the		Develop hypotheses	Abiotic	https://www.kayscien	,
	population size of a common species in a		regarding distribution of a		ce.com/d/quadrats-	
	habitat such as daisies. Use sampling		species as a consequence of a		calculating-	
	techniques to investigate the effect of a		factor. Plan experiments to		percentage-cover-2	
	factor on the distribution of this species.		test hypotheses on			
			distribution. Apply a range of			
			techniques, including the use			
			of transects and quadrats,			
			and the measurement of an			
			abiotic factor.			
TRIPLE ONLY –	Describe pyramids of biomass, Explain how	Producers are mostly plants and algae.	Calculate the efficiency of	Biomass	https://www.youtube.	
Pyramid of	biomass is lost between the different	Pyramids of biomass reveal the mass of living	biomass transfer between	Ingested	com/watch?v=sgh1O	
numbers and	trophic levels.	material at each stage in a chain.	trophic levels.	Respiration	Wm0oTQ	
Biomass	Students should be able to calculate the			Trophic		
	efficiency of biomass transfers between			Frested	https://www.bbc.co.u	
	trophic levels by percentages or fractions of			Efficiency	k/hitesize/guides/zs7g	
	mass			Linciency	wef/revision/2	
	Students will be able to explain how this				wor/revision/5	
	affects the number of energiance at each					
	affects the number of organisms at each					
	trophic level.					
	Losses of biomass are due to:					
	• not all the ingested material is absorbed,					
	some is egested as faeces					
	• some absorbed material is lost as waste,					
	such as carbon dioxide and water in					
	respiration and water and urea in urine.					
	Large amounts of glucose are used in					
	respiration.					
TRIPLE ONLY -	Temperature, water and availability of	Materials decay given the correct conditions.		Fertiliser	https://www.bbc.	
Investigating	oxygen affect the rate of decay of	Composting breaks down materials to release		Appropriate	co.uk/bitesizo/gui	
decay TRIPLE	biological material. Students should be able	nutrients		Optimum	<u>co.uk/bitesize/gui</u>	
	to:			, Anaerobic	des/zy7gw6t/revi	
	calculate rate changes in the decay of			Decav	sion/1	
	hiological material			Decomposition		
	translate information between numerical				https://www.	
	and graphical form				nttps://www.you	
	 nlot and draw appropriate graphs 				tube.com/watch?	
	- piot and draw appropriate graphs				v=iWMtWJvFaPU	
	Selecting appropriate scales for the axes.					
	Gardeners and farmers try to provide					
	optimum conditions for rapid decay of					
	waste biological material. The compost					
	produced is used as a natural fertiliser for					
	growing garden plants or crops. Anaerobic					
	decay produces methane gas. Biogas					

generators can be used to produce methane gas as a fuel.		